Step of Proof: sym_wf
12,41
postcript
pdf
Inference at
*
I
of proof for Lemma
sym
wf
:
T
:Type,
E
:(
T
T
). Sym(
T
;
x
,
y
.
E
(
x
,
y
))
latex
by ((Unfold `sym` 0)
CollapseTHEN ((Auto_aux (first_nat 1:n) ((first_nat 1:n),(first_nat 3:n
C
)) (first_tok :t) inil_term)))
latex
C
.
Definitions
P
Q
,
x
(
s1
,
s2
)
,
Sym(
T
;
x
,
y
.
E
(
x
;
y
))
,
t
T
,
,
x
:
A
.
B
(
x
)
origin